Miscellaneous Geometry Facts

Matthew Brennan
brennanm@mit.edu

Cyclic Quadrilaterals

1. A convex quadrilateral $A B C D$ is cyclic if and only if either:
(a) $\angle A D B=\angle A C B$
(b) $\angle D A B+\angle B C D=180^{\circ}$
2. The above two conditions can be restated as a single condition in terms of directed angles: Four points A, B, C and D are concyclic if and only if $\measuredangle A B C=\measuredangle A D C$.
3. (Power of a Point) Let $A B C D$ be a convex quadrilateral such that $A B$ and $C D$ intersect at P and diagonals $A C$ and $B D$ intersect at $Q . A B C D$ is cyclic if and only if either:
(a) $A Q \cdot Q C=B Q \cdot Q D$ or equivalently $Q A D$ and $Q B C$ are similar
(b) $P A \cdot P B=P C \cdot P D$ or equivalently $P A D$ and $P C B$ are similar
4. Given a triangle $A B C$, the intersections of the internal and external bisectors of angle $\angle B A C$ with the perpendicular bisector of $B C$ both lie on the circumcircle of $A B C$.
5. (Ptolemy's Theorem) A quadrilateral $A B C D$ is cyclic if and only if

$$
A B \cdot C D+A D \cdot B C=A C \cdot B D
$$

6. Let $A B C D$ be a cyclic quadrilateral such that $A B$ and $C D$ intersect at P and diagonals $A C$ and $B D$ intersect at Q. Then:

$$
\frac{B Q}{Q D}=\frac{A B \cdot B C}{A D \cdot D C} \quad \text { and } \quad \frac{P B}{P A}=\frac{B C \cdot B D}{A C \cdot A D}
$$

7. (Polars) Let $A B C D$ be a cyclic quadrilateral inscribed in circle Γ such that $A B$ and $C D$ intersect at P and diagonals $A C$ and $B D$ intersect at Q. If the tangents drawn from P to Γ touch Γ at R and S, then R, Q and S are collinear.

Circles

1. (Power of a Point) Given a circle Γ with center O and a point P then for any line ℓ through P that intersects Γ at A and B, the value $P A \cdot P B$ is constant as ℓ varies and is equal to the power of the point P with respect to Γ.
(a) The power of P is equal to $r^{2}-P O^{2}$ if P is inside Γ and $P O^{2}-r^{2}$ otherwise.
(b) If $P A$ is tangent to Γ, then the power of P is equal to $P A^{2}$.
2. (Radical Axis) Given two circles Γ_{1} and Γ_{2}, the set of all points P with equal powers with respect to Γ_{1} and Γ_{2} is a line which is the radical axis of the two circles.
(a) The radical axis is perpendicular to the line through the centers of Γ_{1} and Γ_{2}.
(b) If Γ_{1} and Γ_{2} intersect at A and B, then the radical axis passes through A and B.
(c) If $A B$ is a common tangent with A on Γ_{1} and B on Γ_{2}, then the radical axis passes through the midpoint of $A B$.
3. (Radical Center) Given three circles Γ_{1}, Γ_{2} and Γ_{3}, the three radical axes between pairs of the three circles meet at a common point P which is the radical center of the circles.
4. A point P is a circle of radius zero and the radical axis of P and a circle Γ is the line through the midpoints of $P A$ and $P B$ where A and B are points on Γ such that $P A$ and $P B$ are tangent to Γ.
5. (Monge's Theorem) Given three circles Γ_{1}, Γ_{2} and Γ_{3}. If P, Q and R are the external centers of homothety between pairs of the three circles, then P, Q and R are collinear. If P and Q are internal centers of homothety, then P, Q and R are also collinear.
6. Two circles Γ_{1} and Γ_{2} intersect at R and have centers O_{1} and O_{2}. If P and Q are the internal and external centers of homothety between the two circles, then $\angle P R Q=90^{\circ}$. The lines $R P$ and $R Q$ are the internal and external bisectors of $\angle O_{1} R O_{2}$.

Triangle Geometry

1. (Angle Bisector Theorem) Let $A B C$ be a given triangle and let P and Q be the intersections of the internal and external bisectors of angle $\angle A B C$ with line $A C$. Then

$$
\frac{A B}{B C}=\frac{A P}{P C}=\frac{A Q}{Q C}
$$

2. Angles around the centers of a triangle $A B C$:
(a) If I is the incenter of $A B C$ then $\angle B I C=90^{\circ}+\frac{a}{2}, \angle I B C=\frac{b}{2}$ and $\angle I C B=\frac{c}{2}$.
(b) If H is the orthocenter of $A B C$ then $\angle B H C=180^{\circ}-a, \angle H B C=90^{\circ}-c$ and $\angle H C B=$ $90^{\circ}-b$.
(c) If O is the circumcenter of $A B C$ then $\angle B O C=2 a$ and $\angle O B C=\angle O C B=90^{\circ}-a$.
(d) If I_{a} is the A-excenter of $A B C$ then $\angle A I_{a} B=\frac{c}{2}, \angle A I_{a} C=\frac{b}{2}$ and $\angle B I_{a} C=90^{\circ}-\frac{a}{2}$.
3. Pedal triangles of the centers of a triangle $A B C$:
(a) If $D E F$ is the triangle formed by projecting the incenter I onto sides $B C, A C$ and $A B$, then I is the circumcenter of $D E F$ and $\angle E D F=90^{\circ}-\frac{a}{2}$.
(b) If $D E F$ is the triangle formed by projecting the orthocenter H onto sides $B C, A C$ and $A B$, then H is the incenter of $D E F$ and $\angle E D F=180^{\circ}-2 a$.
(c) The medial triangle of $A B C$ is the pedal triangle of the circumcenter O of $A B C$ and O is its orthocenter.
4. Alternate methods of defining the orthocenter and circumcenter:
(a) O is the circumcenter of $A B C$ if and only if $\measuredangle A O B=2 \measuredangle A C B$ and $O A=O B$.
(b) H is the orthocenter of $A B C$ if and only if H lies on the altitude from A and satisfies that $\measuredangle B H C=180^{\circ}-\measuredangle B A C$.
5. Facts related to the orthocenter H of a triangle $A B C$ with circumcircle Γ :
(a) If O is the circumcenter of $A B C$, then $\angle B A H=\angle C A O$.
(b) If D is the point diametrically opposite to A on Γ and M is the midpoint of $B C$, then M is also the midpoint of $H D$.
(c) If $A H, B H$ and $C H$ intersect Γ again at D, E and F, then there is a homothety centered at H sending the pedal triangle of H to $D E F$ with ratio 2.
(d) If D and E are the intersections of $A H$ with $B C$ and Γ, respectively, then D is the midpoint of $H E$.
(e) H lies on the three circles formed by reflecting Γ about $A B, B C$ and $A C$.
(f) If M is the midpoint of $B C$ then $A H=2 \cdot O M$.
(g) If $B H$ and $C H$ intersect $A C$ and $A B$ at D and E, and M is the midpoint of $B C$, then M is the center of the circle through B, D, E and C, and $M D$ and $M E$ are tangent to the circumcircle of $A D E$.
6. Facts related to the incenter I and excenters I_{a}, I_{b}, I_{c} of $A B C$ with circumcircle Γ :
(a) If the incircle of $A B C$ is tangent to $A B$ and $A C$ at points D and E and s is the semiperimeter of $A B C$ then

$$
A D=A E=\frac{A B+A C-B C}{2}=s-B C
$$

(b) If $A I$ intersects Γ at D then $D B=D I=D C, D$ is the midpoint of $I I_{a}$, and $I I_{a}$ is a diameter of the circle with center D which passes through B and C.
(c) If $A I, B I$ and $C I$ intersect Γ at D, E and F, then $I_{a} I_{b} I_{c}, D E F$ and the pedal triangle of I are similar and have parallel sides.
(d) I is the orthocenter of $I_{a} I_{b} I_{c}$ and Γ is the nine-point circle of $I_{a} I_{b} I_{c}$.
(e) If $B I$ and $C I$ intersect Γ again at D and E, then I is the reflection of A in line $D E$ and if M is the intersection of the external bisector of $\angle B A C$ with Γ, then $D M E I$ is a parallelogram.
(f) If the incircle and A-excircle of $A B C$ are tangent to $B C$ at D and $E, B D=C E$.
(g) If the A-excircle of $A B C$ is tangent to $A B, A C$ and $B C$ at D, E and F then $A B+B F=$ $A C+C F=A D=A E=s$ where s is the semi-perimeter of $A B C$.
(h) If M is the midpoint of $\operatorname{arc} B A C$ of Γ, then M is the midpoint of $I_{b} I_{c}$ and the center of the circle through I_{b}, I_{c}, B and C.
7. (Nine-Point Circle) Given a triangle $A B C$, let Γ denote the circle passing through the midpoints of the sides of $A B C$. If H is the orthocenter of $A B C$, then Γ passes through the midpoints of $A H, B H$ and $C H$ and the projections of H onto the sides of $A B C$.
8. (Feuerbach's Theorem) The nine-point circle is tangent to the incircle and excircles.
9. (Euler Line) If O, H and G are the circumcenter, orthocenter and centroid of a triangle $A B C$, then G lies on segment $O H$ with $H G=2 \cdot O G$.
10. (Symmedian) Given a triangle $A B C$ such that M is the midpoint of $B C$, the symmedian from A is the line that is the reflection of $A M$ in the bisector of angle $\angle B A C$.
(a) If the tangents to the circumcircle Γ of $A B C$ at B and C intersect at N, then N lies on the symmedian from A and $\angle B A M=\angle C A N$.
(b) If the symmedian from A intersects Γ at D, then $A B / B D=A C / C D$.
11. If the median from A in a triangle $A B C$ intersects the circumcircle Γ of $A B C$ at D, then $A B \cdot B D=A C \cdot C D$.
12. (Euler's Formula) Let O, I and I_{a} be the circumcenter, incenter and A-excenter of a triangle $A B C$ with circumradius R, inradius r and A-exradius r_{a}. Then:
(a) $O I=\sqrt{R(R-2 r)}$.
(b) $O I_{a}=\sqrt{R\left(R+2 r_{a}\right)}$.
13. (Poncelet's Porism) Let Γ and ω be two circles with centers O and I and radii R and r, respectively, such that $O I=\sqrt{R(R-2 r)}$. Let A, B and C be any three points on Γ such that lines $A B$ and $A C$ are tangent to ω. Then line $B C$ is also tangent to ω.
14. (Apollonius Circle) Let $A B C$ be a given triangle and let P be a point such that $A B / B C=$ $A P / P C$. If the internal and external bisectors of angle $\angle A B C$ meet line $A C$ at Q and R, then P lies on the circle with diameter $Q R$.
15. Let $A B C$ be a given triangle with incircle ω and A-excircle ω_{a}. If ω and ω_{a} are tangent to $B C$ at M and N, then $A N$ passes through the point diametrically opposite to M on ω and $A M$ passes through the point diametrically opposite to N on ω_{a}.
16. Let $A B C$ be a triangle with incircle ω which is tangent to $B C, A C$ and $A B$ at D, E and F. Let M be the midpoint of $B C$. The perpendicular to $B C$ at D, the median $A M$ and the line $E F$ are concurrent.
17. Let $A B C$ be a triangle with incenter I and incircle ω which is tangent to $B C, A C$ and $A B$ at D, E and F. The angle bisector $C I$ intersects $F E$ at a point T on the line adjoining the midpoints of $A B$ and $B C$. It also holds that $B F T I D$ is cyclic and $\angle B T C=90^{\circ}$.
18. Let $A B C$ be a triangle with incircle ω and let D and E be the points at which ω is tangent to $B C$ and the A-excircle is tangent to $B C$. Then $A E$ passes through the point diametrically opposite to D on ω.
19. Let $A B C$ be a triangle with A-excenter I_{A} and altitutde $A D$. Let M be the midpoint of $A D$ and let K be the point of tangency between the incircle of $A B C$ and $B C$. Then I_{A}, K and M are collinear.

Collinearity and Concurrency

1. (Ceva's Theorem) Let $A B C$ be a triangle and D, E and F be on the lines $B C, A C$ and $A B$ such that an even number are on the extensions of the sides (zero or two). Then $A D, B E$ and $C F$ are concurrent if and only if

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1
$$

2. (Menelaus' Theorem) Let $A B C$ be a triangle and D, E and F be on the lines $B C, A C$ and $A B$ such that an odd number are on the extensions of the sides (one or three). Then D, E and F are collinear if and only if

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1
$$

3. (Trig Ceva) Let $A B C$ be a triangle and D, E and F be on the lines $B C, A C$ and $A B$ such that an even number are on the extensions of the sides (zero or two). Then $A D, B E$ and $C F$ are concurrent if and only if

$$
\frac{\sin (\angle A B E)}{\sin (\angle C B E)} \cdot \frac{\sin (\angle B C F)}{\sin (\angle A C F)} \cdot \frac{\sin (\angle C A D)}{\sin (\angle B A D)}=1
$$

4. (Casey's Theorem) If A_{1}, B_{1} and C_{1} are points on the sides $B C, A C$ and $A B$ of a triangle $A B C$, then the perpendiculars to their respective sides at these three points are concurrent if and only if $B A_{1}^{2}-C A_{1}^{2}+C B_{1}^{2}-A B_{1}^{2}+A C_{1}^{2}-B C_{1}^{2}=0$.
5. (Pascal's Theorem) If A, B, C, D, E, F are points on a circle then the intersections of the pairs of lines $A B$ and $D E, B C$ and $E F, C D$ and $F A$ lie on a line.
6. (Pappus' Theorem) If A, C and E lie on one line ℓ_{1} and B, D and F lie on a line ℓ_{2}, then the intersections of the pairs of lines $A B$ and $D E, B C$ and $E F, C D$ and $F A$ lie on a line.
7. (Brianchon's Theorem) If $A B C D E F$ is a hexagon with an inscribed circle then $A D, B E$ and $C F$ are concurrent.
8. (Desargues Theorem) Let $A B C$ and $X Y Z$ be triangles. Let D, E, F be the intersections of the pairs of lines $A B$ and $X Y, B C$ and $Y Z, A C$ and $X Z$. Then D, E and F are collinear if and only if $A X, B Y$ and $C Z$ are concurrent.
9. Pascal's theorem is true when points are not necessarily distinct and many of its applications concern tangent lines when some of the six points are equal.

Trigonometry

1. (Sine Law) Given a triangle $A B C$ with circumradius R

$$
\frac{B C}{\sin \angle A}=\frac{A C}{\sin \angle B}=\frac{A B}{\sin \angle C}=2 R
$$

2. (Cosine Law) Given a triangle $A B C$

$$
B C^{2}=A B^{2}+A C^{2}-2 \cdot A B \cdot A C \cdot \cos \angle A
$$

3. (Pythagorean Theorem) If $A B C$ is a triangle, then $\angle A B C=90^{\circ}$ if and only if

$$
A B^{2}+B C^{2}=A C^{2}
$$

4. Given a triangle $A B C$ and a point D on line $B C$, then

$$
\frac{\sin \angle B A D}{\sin \angle C A D}=\frac{B D \cdot A C}{C D \cdot A B}
$$

5. (Stewart's Theorem) Let a, b, c be the side lengths of a triangle $A B C$ and let d be the length of a cevian from A to $B C$ that divides $B C$ into segments of lengths m and n with m closer to B. Then

$$
b^{2} m+c^{2} n=a\left(d^{2}+m n\right)
$$

Miscellaneous Synthetic Facts

1. (Spiral Similarity) Let $O A B$ and $O C D$ be directly similar triangles. Then $O A C$ and $O B D$ are also directly similar triangles.
2. The unique center of spiral similarity sending $A B$ to $C D$ is the second intersection of the circumcircles of $Q A B$ and $Q C D$ where $A C$ and $B D$ intersect at Q.
3. Lines $A B$ and $C D$ are perpendicular if and only if $A C^{2}-A D^{2}=B C^{2}-B D^{2}$.
4. (Apollonius Circle) Given two points A and B and a fixed $r>0$, then the locus of points Q such that $A Q / B Q=r$ is a circle Γ with center at the midpoint of $Q_{1} Q_{2}$ where Q_{1} and Q_{2} are the two points on line $A B$ satisfying $A Q_{i} / B Q_{i}=r$ for $i=1,2$.
5. Let $A B C D$ be a convex quadrilateral. The four interior angle bisectors of $A B C D$ are concurrent and there exists a circle Γ tangent to the four sides of $A B C D$ if and only if $A B+C D=A D+B C$.
6. (Simson Line) Let M, N and P be the projections of a point Q onto the sides of a triangle $A B C$. Then Q lies on the circumcircle of $A B C$ if and only if M, N and P are collinear. If Q lies on the circumcircle of $A B C$, then the reflections of Q in the sides of $A B C$ are collinear and pass through the orthocenter of the triangle.
7. (Broken Chord Theorem) Let E is the midpoint of major arc $\widehat{A B C}$ of the circumcircle of a triangle $A B C$ where $A B<B C$. If D is the projection of E onto $B C$, then $A B+B D=D C$.
8. (Butterfly Theorem) Let M be the midpoint of a chord $X Y$ of a circle Γ. The chords $A B$ and $C D$ pass through M. If $A D$ and $B C$ intersect chord $X Y$ at P and Q, then M is also the midpoint of $P Q$.
9. (Miquel Point) Let D, E and F be points on sides $B C, A C$ and $A B$ of a triangle $A B C$. Then the circumcircles of $A E F, B D F$ and $C D E$ are concurrent.
10. (Isogonal Conjugates) Let $A B C$ be a triangle and P be a point. If the reflection of $B P$ in the angle bisector of $\angle A B C$ and the reflection of $C P$ in the angle bisector $\angle A C B$ intersect at Q, then Q lies on the reflection of $C P$ in the angle bisector of $\angle A C B$.
11. (Casey's Theorem) Let $O_{1}, O_{2}, O_{3}, O_{4}$ be four circles tangent to a circle O. Let $t_{i j}$ be the length of the external common tangent between $O_{i} O_{j}$ if O_{i} and O_{j} are tangent to O from the same side and the length of the internal common tangent otherwise. Then

$$
t_{12} \cdot t_{34}+t_{41} \cdot t_{23}=t_{13} \cdot t_{24}
$$

The converse is also true: if the above equality holds then $O_{1}, O_{2}, O_{3}, O_{4}$ are tangent to O.
12. (Transversal Theorem) If A, B and C are collinear and A^{\prime}, B^{\prime} and C^{\prime} are points on $A P, B P$ and $C P$, then A^{\prime}, B^{\prime} and C^{\prime} are collinear if and only if

$$
B C \cdot \frac{A P}{A^{\prime} P}+C A \cdot \frac{B P}{B^{\prime} P}+A B \cdot \frac{C P}{C^{\prime} P}=0
$$

where all lengths are directed.
13. (Mixtilinear Incircles) Let $A B C$ be a triangle with circumcircle Γ and let ω be a circle tangent internally to Γ and to $A B$ anc $A C$ at X and Y. Then the incenter of $A B C$ is the midpoint of segment $X Y$.
14. (Curvilinear Incircles) Let $A B C$ be a triangle with circumcircle Γ and let D be a point on segment $B C$. Let ω be a circle tangent to $\Gamma, D A$ and $D C$. If ω is tangent to $D A$ and $D C$ at F and E, then the incenter of $A B C$ lies on $F E$.

